Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 712
Filtrar
1.
PLoS One ; 19(4): e0297028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557742

RESUMO

Machine learning techniques that rely on textual features or sentiment lexicons can lead to erroneous sentiment analysis. These techniques are especially vulnerable to domain-related difficulties, especially when dealing in Big data. In addition, labeling is time-consuming and supervised machine learning algorithms often lack labeled data. Transfer learning can help save time and obtain high performance with fewer datasets in this field. To cope this, we used a transfer learning-based Multi-Domain Sentiment Classification (MDSC) technique. We are able to identify the sentiment polarity of text in a target domain that is unlabeled by looking at reviews in a labelled source domain. This research aims to evaluate the impact of domain adaptation and measure the extent to which transfer learning enhances sentiment analysis outcomes. We employed transfer learning models BERT, RoBERTa, ELECTRA, and ULMFiT to improve the performance in sentiment analysis. We analyzed sentiment through various transformer models and compared the performance of LSTM and CNN. The experiments are carried on five publicly available sentiment analysis datasets, namely Hotel Reviews (HR), Movie Reviews (MR), Sentiment140 Tweets (ST), Citation Sentiment Corpus (CSC), and Bioinformatics Citation Corpus (BCC), to adapt multi-target domains. The performance of numerous models employing transfer learning from diverse datasets demonstrating how various factors influence the outputs.


Assuntos
Big Data , Briozoários , Animais , Análise de Sentimentos , Algoritmos , Biologia Computacional
2.
J Morphol ; 285(4): e21686, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491849

RESUMO

Brachiopods have the most complex lophophore in comparison with other lophophorates, i.e., phoronids and bryozoans. However, at early ontogenetic stages, brachiopods have a lophophore of simple morphology, which consists of the oral tentacles. Data on the ultrastructure of the oral tentacles is mostly missing. Nonetheless, it has recently been suggested that the structure of oral tentacles is ancestral for all lophophorates in general, and for brachiopods in particular. The fine structure of the oral tentacles in the brachiopod Hemithiris psittacea is studied using light microscopy, transmission and scanning electron microscopy, cytochemistry and confocal laser scanning microscopy. The oral tentacles have a round shape in transverse section, and four ciliary zones, i.e., one frontal, two lateral, and one abfrontal. Latero-frontal sensory cells occur among the frontal epithelium. Four basiepithelial nerves in the ciliary epithelium are colocalized with ciliary zones. Lophophores of simple morphology in phoronids and brachiopods are characterized by non-specified round forms of tentacles. In phoronids and bryozoans, tentacles have additional latero-frontal ciliary zones that function as a sieve during filtration. In most brachiopods, lateral cilia are involved in the capture of food particles, whereas latero-frontal cells are retained in the frontal zone as sensory elements. The oral tentacles of H. psittacea contain a coelomic canal and have distinct frontal and abfrontal longitudinal muscles, which are separated from each other by peritoneal cells. A similar structure of tentacle muscles occurs in all bryozoans, whereas in phoronids, the frontal and abfrontal tentacle muscles are not separated by peritoneal cells. We suggest that the lophophorates' ancestor had tentacles, which were similar to the tentacles of some phoronids with lophophore of simple morphology. We also assume that the structure of the oral tentacles is ancestral for all brachiopods and the specialization of brachiopod tentacles correlates with the appearance of the double row of tentacles.


Assuntos
Briozoários , Tecido Nervoso , Animais , Invertebrados/anatomia & histologia , Briozoários/anatomia & histologia , Músculos , Epitélio
3.
PeerJ ; 12: e16969, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410796

RESUMO

Molecular biomonitoring programs increasingly use environmental DNA (eDNA) for detecting targeted species such as marine non-indigenous species (NIS) or endangered species. However, the current molecular detection workflow is cumbersome and time-demanding, and thereby can hinder management efforts and restrict the "opportunity window" for rapid management responses. Here, we describe a direct droplet digital PCR (direct-ddPCR) approach to detect species-specific free-floating extra-cellular eDNA (free-eDNA) signals, i.e., detection of species-specific eDNA without the need for filtration or DNA extraction, with seawater samples. This first proof-of-concept aquarium study was conducted with three distinct marine species: the Mediterranean fanworm Sabella spallanzanii, the ascidian clubbed tunicate Styela clava, and the brown bryozoan Bugula neritina to evaluate the detectability of free-eDNA in seawater. The detectability of targeted free-eDNA was assessed by directly analysing aquarium marine water samples using an optimized species-specific ddPCR assay. The results demonstrated the consistent detection of S. spallanzanii and B. neritina free-eDNA when these organisms were present in high abundance. Once organisms were removed, the free-eDNA signal exponentially declined, noting that free-eDNA persisted between 24-72 h. Results indicate that organism biomass, specimen characteristics (e.g., stress and viability), and species-specific biological differences may influence free-eDNA detectability. This study represents the first step in assessing the feasibility of direct-ddPCR technology for the detection of marine species. Our results provide information that could aid in the development of new technology, such as a field development of ddPCR systems, which could allow for automated continuous monitoring of targeted marine species, enabling point-of-need detection and rapid management responses.


Assuntos
Briozoários , Urocordados , Animais , Reação em Cadeia da Polimerase/métodos , Monitoramento Biológico , Água do Mar , Urocordados/genética
4.
Science ; 383(6685): 849-854, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386756

RESUMO

Securines and securamines are cytotoxic alkaloids that contain reactive alkene and heterocyclic residues embedded in skeletons comprising four to six oxidized rings. This structural complexity imparts a rich chemistry to the isolates but has impeded synthetic access to the structures in the nearly three decades since their isolation. We present a flexible route to eight isolates that exemplify the three skeletal classes of metabolites. The route proceeds by the modular assembly of the advanced azides 38 and 49 (13 steps, 6 to 10% yield), sequential oxidative photocyclizations, and late-stage functional group manipulations. With this approach, the targets were obtained in 17 to 19 steps, 12 to 13 purifications, and 0.5 to 3.5% overall yield. The structure of an advanced intermediate was elucidated by microcrystal electron diffraction (MicroED) analysis. The route will support structure-function and target identification studies of the securamines.


Assuntos
Alcaloides , Briozoários , Alcaloides/síntese química , Alcenos/química , Azidas/química , Elétrons , Animais , Catálise , Oxirredução
5.
J Morphol ; 285(2): e21678, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361263

RESUMO

Ctenostome bryozoans are a small group of gymnolaemates comprising less than 400 recent species. They are paraphyletic and ctenostome-grade ancestors gave rise to Cheilostomata, the most dominant and speciose taxon of Bryozoa in the present day. Investigations into ctenostomes are important for reconstructing character evolution among Gymnolaemata. As a continuation of studies on a morphological series of ctenostome bryozoans, we herein investigate six species of hislopiids, a small clade of three genera occurring in freshwater habitats. The general morphology of all species is similar in having primarily uniserial chains of encrusting zooids, which are mostly oval to ellipsoid and have a flattened frontobasal axis. Hislopia prolixa and Echinella placoides often have more slender zooids with a higher frontobasal axis. Apertures of hislopiids are quadrangular, lined by a thickened cuticle. Apertural spines are present in various lengths in E. placoides, Hislopia lacustris and Hislopia corderoi. The remaining cuticle is rather thin except at lateral areas, close to the pore-plates which are prominent in hislopiids because of abundant special and limiting cells. All species except H. corderoi and Timwoodiellina natans have a prominent collar obstructing the vestibulum, whereas the latter two species instead have an 'external collar' as cuticular, outer folds projecting over the aperture. Hislopiid lophophores carry eight, or more commonly 12-18 tentacles. The digestive tract is distinguished by an often highly elongated esophagus and/or cardia, with the latter always having a prominent bulbous part in the form of a proventriculus-or gizzard in E. placoides. The caecum is extensive in all species. In Hislopia the intestine is characteristically two-chambered with a proximal and distal part before entering an anal tube of various length. The latter is present in all species except T. natans and terminates in mid-lophophoral area. Oocytes in E. placoides are large and macrolecithal indicating brooding and the production of lecithotrophic larvae. Hislopia species produce small, oligolecithal ones, which suggests zygote spawning and planktotrophy. In general, the morphology is similar among the different hislopiids with characters of the gut aiding in delineating the genera Echinella and Timwoodiellina.


Assuntos
Briozoários , Animais , Briozoários/anatomia & histologia , Canal Anal , Larva , Oócitos , Água Doce
6.
J Morphol ; 285(2): e21679, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38329427

RESUMO

Bryozoan colonies consist of zooids, which can differ in structure and function. Most heteromorphic zooids are unable to feed and autozooids supply them with nutrients. The structure of the tissues providing nutrient transfer is poorly investigated. Here, I present a detailed description of the colonial system of integration (CSI) and communication pores in autozooids and avicularia of the cheilosome bryozoan Terminoflustra membranaceotruncata. The CSI is the nutrient transport and distribution system in the colony. In both autozooids and avicularia it consists of a single cell type, that is, elongated cells, and has a variable branching pattern, except for the presence of a peripheral cord. The general similarity in the CSI structure in avicularia and autozooids is probably due to the interzooidal type of the avicularium. Interzooidal avicularia are likely to consume only a part of the nutrients delivered to them by the CSI, and they transit the rest of the nutrients further. The variability and irregularity of branching pattern of the CSI may be explained by the presence of single communication pores and their varying number. The structure of communication pores is similar regardless of their location (in the transverse or lateral wall) and the type of zooid in contact. Rosette complexes include a cincture cell, a few special cells, and a few limiting cells. Along each zooidal wall, there are communication pores with both unidirectional and bidirectional polarity of special cells. However, the total number of nucleus-containing lobes of special cells is approximately the same on each side of any zooidal wall. Supposing the polarity of special cells reflects the direction of nutrient transport, the pattern of special cells polarity is probably related to the need for bidirectional transport through each zooidal wall. The possibility for such transport is important in large perennial colonies with wide zones of autozooids undergoing polypide degeneration.


Assuntos
Briozoários , Animais , Briozoários/fisiologia
7.
Mar Environ Res ; 193: 106256, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006852

RESUMO

Widespread habitat-forming invaders inhabiting marinas, such as the spaghetti bryozoan Amathia verticillata, allow exploring facilitation processes across spatiotemporal contexts. Here we investigate the role of this bryozoan as habitat for native and exotic macrofaunal assemblages across different ecoregions of Western Mediterranean and East Atlantic coasts, and a monthly variation over a year. While only 7 (all peracarid crustaceans) of the 54 associated species were NIS, they dominated macrofaunal assemblages in terms of abundance, raising the potential for invasional meltdown. NIS richness and community structure differed among marinas but not among ecoregions, highlighting the importance of marina singularities in modulating facilitation at spatial scale. Despite facilitation did not depend on bryozoan abundance fluctuations, it was affected by its deciduous pattern, peaking in summer and disappearing in late winter. Monitoring A. verticillata in marinas, especially in summer periods, may improve the detection and management of multiple associated NIS.


Assuntos
Briozoários , Animais , Espécies Introduzidas , Ecossistema , Crustáceos , Alimentos
8.
Mar Environ Res ; 193: 106255, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37976842

RESUMO

Coastal infrastructure replaces complex and heterogeneous natural habitats with flat, two-dimensional concrete walls, reducing refuges against predation, which modifies the composition and identity of the dominant species in sessile communities. This modification in the community structure can also change the reproductive propagules available in plankton, affecting the recruitment dynamics in communities from natural habitats nearby. Here, we tested the combined effects of the habitat type (simple vs. complex with holes) and predation on the diversity, larval production, and structure of sessile communities from a recreational marina. Complex substrates showed a larger biomass and a greater abundance of solitary organisms, mainly ascidians and bivalves, that benefited from refuges. Barnacles and calcified encrusting bryozoans dominated simple, flat substrates. The difference in dominance affected the pool of larvae produced by the communities. After eight months, communities growing on flat substrates produced more barnacle larvae than those from complex substrates, where larvae of ascidians were more abundant. However, this difference disappeared after 18 months of community development. The difference in the pool of larvae between simple and complex substrates did not affect the structure of the community on flat substrates nearby, which was determined by the predation regime. In the studied region, communities in artificial environments are under intense predation control, suppressing eventual recruitment differences in communities developing in flat substrates. Large interventions that modify habitat topography, creating refuges in the subtidal zone, can change the dynamic of the sessile communities in artificial habitats and, consequently, the larval supply in the vicinities. However, differences in larval supply will only translate in distinct sessile communities when the scale of intervention encompasses large areas, and other processes do not buffer the differences in recruitment.


Assuntos
Briozoários , Urocordados , Animais , Larva , Ecossistema , Biomassa
9.
Mar Pollut Bull ; 199: 115938, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141584

RESUMO

Today, the world is increasingly concerned about marine litter and its interaction with marine biodiversity. However, knowledge concerning the fouling organisms associated with marine litter is very limited in many of the world's marine environments. In this survey, we investigated biofouling on different types of marine litter washed up on all the coasts of the central Atlantic of Morocco. The findings revealed 21 fouling species belonging to 9 phyla (Arthropoda, Mollusca, Echinodermata, Annelida, Bryozoa, Porifera, Chlorophyta, Ochrophyta, and Ascomycota). More specifically, frequently observed fouling species include Mytilus galloprovincialis, Balanus laevis, Megabalanus coccopoma, and Pollicipes pollicipes species. Large marine litter items recorded the highest colonization of marine organisms in comparison to small ones. The frequency of occurrence (FO) of the species most commonly fouled on all coasts was Perforatus perforatus (FO = 48.60), followed by Mytilus galloprovincialis (FO = 45.80), Balanus trigonus (FO = 32.05), Balanus laevis (FO = 30.25), Megabalanus coccopoma (FO = 25.25), Bryozoa species (FO = 19.40), Spirobranchus triqueter (FO = 18.18), Lepas pectinata (FO = 14.45), and Pollicipes pollicipes (FO = 13.05). The majority of the species registered in this study are sessile. Substrate coverage by fouling taxa was significantly different between plastic substrate and other types of marine litter. Likewise, this study revealed that the proportion of fouling organisms is higher on rough surfaces. Overall, this research could be crucial to understanding the little-known subject of marine litter and its colonization by marine biota. Given that these marine litters can act as vectors and cause ecological, biogeographical, and conservation issues in the marine environment, minimizing the quantity of anthropogenic litter reaching the Moroccan Atlantic could significantly reduce its accumulation on the sea surface and seabed, thereby reducing the risk of invasion by non-indigenous species.


Assuntos
Incrustação Biológica , Briozoários , Animais , Marrocos , Plásticos/química , Biodiversidade , Moluscos , Monitoramento Ambiental , Resíduos/análise
10.
Proc Biol Sci ; 290(2010): 20231458, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37909081

RESUMO

Parental care is considered crucial for the enhanced survival of offspring and evolutionary success of many metazoan groups. Most bryozoans incubate their young in brood chambers or intracoelomically. Based on the drastic morphological differences in incubation chambers across members of the order Cheilostomatida (class Gymnolaemata), multiple origins of incubation were predicted in this group. This hypothesis was tested by constructing a molecular phylogeny based on mitogenome data and nuclear rRNA genes 18S and 28S with the most complete sampling of taxa with various incubation devices to date. Ancestral character estimation suggested that distinct types of brood chambers evolved at least 10 times in Cheilostomatida. In Eucratea loricata and Aetea spp. brooding evolved unambiguously from a zygote-spawning ancestral state, as it probably did in Tendra zostericola, Neocheilostomata, and 'Carbasea' indivisa. In two further instances, brooders with different incubation chamber types, skeletal and non-skeletal, formed clades (Scruparia spp., Leiosalpinx australis) and (Catenicula corbulifera (Steginoporella spp. (Labioporella spp., Thalamoporella californica))), each also probably evolved from a zygote-spawning ancestral state. The modular nature of bryozoans probably contributed to the evolution of such a diverse array of embryonic incubation chambers, which included complex constructions made of polymorphic heterozooids, and maternal zooidal invaginations and outgrowths.


Assuntos
Briozoários , Invertebrados , Animais , Filogenia , Reprodução/genética
11.
Mar Drugs ; 21(10)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37888459

RESUMO

Inflammation is a defense mechanism of the body in response to harmful stimuli such as pathogens, damaged cells, toxic compounds or radiation. However, chronic inflammation plays an important role in the pathogenesis of a variety of diseases. Multiple anti-inflammatory drugs are currently available for the treatment of inflammation, but all exhibit less efficacy. This drives the search for new anti-inflammatory compounds focusing on natural resources. Marine organisms produce a broad spectrum of bioactive compounds with anti-inflammatory activities. Several are considered as lead compounds for development into drugs. Anti-inflammatory compounds have been extracted from algae, corals, seaweeds and other marine organisms. We previously reviewed anti-inflammatory compounds, as well as crude extracts isolated from echinoderms such as sea cucumbers, sea urchins and starfish. In the present review, we evaluate the anti-inflammatory effects of compounds from other marine organisms, including macroalgae (seaweeds), marine angiosperms (seagrasses), medusozoa (jellyfish), bryozoans (moss animals), mollusks (shellfish) and peanut worms. We also present a review of the molecular mechanisms of the anti-inflammatory activity of these compounds. Our objective in this review is to provide an overview of the current state of research on anti-inflammatory compounds from marine sources and the prospects for their translation into novel anti-inflammatory drugs.


Assuntos
Antozoários , Briozoários , Cifozoários , Alga Marinha , Animais , Arachis , Organismos Aquáticos , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Frutos do Mar
12.
Biofouling ; 39(7): 748-762, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37791479

RESUMO

Bryozoans are commonly associated with various artificial structures in marine environments and have been responsible for several bioinvasion events worldwide. Understanding the interactions between bryozoans and artificial structures is therefore essential to prevent the establishment and spread of potential bioinvaders. This study investigated bryozoan recruitment on four different substrates (PET, nautical ropes, metal, and PVC) placed in three orientations (vertical, horizontal facing down and facing up) in an area of the Western Atlantic. In total, 15 species of bryozoans were found. The results revealed significant variations in assemblages' richness, with bryozoans showing a preference for settling on PVC (14 species found) and on the underside of horizontal substrates (15 species found), resulting in the higher representativity observed in this study. Cryptogenic (nine species) and exotic (five species) bryozoans dominated the assemblages in all treatments, indicating that the type of substrate (especially artificial) and its orientation can favor the settlement of bryozoans, particularly non-native species. Therefore, the availability of multiple types of artificial substrates in marine environments should be treated as a cause for concern.


Assuntos
Biofilmes , Briozoários , Animais
13.
PeerJ ; 11: e16004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701841

RESUMO

There is a lack of cost-effective, environmentally-friendly tools available to manage marine biofouling accumulation on static artificial structures such as drilling rigs, wind turbines, marine farms, and port and marina infrastructure. For there to be uptake and refinement of tools, emerging technologies need to be tested and proven at an operational scale. This study aimed to see whether biofouling accumulation could be suppressed on marine infrastructure under real-world conditions through the delivery of continuous bubble streams. Submerged surfaces of a floating marina pontoon were cleaned in-situ by divers, and the subsequent colonisation by biofouling organisms was monitored on treated (bubbles applied) and untreated sections. Continuous bubble streams proved highly effective (>95%) in controlling macrofouling accumulation on the underside surface of the marina pontoon for the first 2 months after deployment, but efficacy dropped off rapidly once bubble stream delivery was partially obscured due to biofouling accumulation on the diffuser itself. Although extensive macrofouling cover by mussels, bryozoans and hydroids was observed on treated surfaces by 4 months (27.5%, SE = 4.8%), biofouling % cover and diversity was significantly higher on untreated surfaces (79.6%, SE = 2.9%). While this study demonstrates that continuous bubble streams greatly restrict biofouling accumulation over short-to-medium timescales, improved system design, especially the incorporation of diffusers resistant to fouling, is needed for the approach to be considered a viable long-term option for biofouling management on static artificial structures.


Assuntos
Incrustação Biológica , Briozoários , Fabaceae , Animais , Incrustação Biológica/prevenção & controle , Transporte Biológico , Fazendas
14.
Mar Pollut Bull ; 195: 115469, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37703630

RESUMO

Increasing amount of anthropogenic litter in the marine environment has provided an enormous number of substrates for a wide range of marine organisms, thus serving as a potential vector for the transport of fouling organisms. Here, we examined the fouling organisms on different types of stranded litter (plastic, glass, rubber, foam sponge, cloth, metal and wood) on eight beaches along the southeast coast of India. In total, 17 encrusting species belonging to seven phyla (Arthropoda, Bryozoa, Mollusca, Annelida, Cnidaria, Chlorophyta and Foraminifera) were identified on 367 items, with one invasive species, the mussel Mytella strigata, detected. The most common species associated with marine litter were the cosmopolitan bryozoans Jellyella tuberculata (%O = 31.64 %) and J. eburnea (28.61 %), the barnacle species Lepas anserifera (29.97 %), Amphibalanus amphitrite (22.34 %) and Amphibalanus sp. (14.16 %), and the oyster species Saccostrea cucullata (13.62 %) and Magallana bilineata (5.44 %). We also reported the first records on stranded litter of four species: the gastropod species Pirenella cingulata and Umbonium vestiarium, the foraminiferan Ammonia beccarii, and the oyster M. bilineata. This study is thus the first documentation of marine litter as a vector for species dispersal in India, where the production and consumption of plastic rank among the highest in the world. We also highlight the increasing risk of invasions by non-indigenous organisms attached to debris along the southeast coast of India. Comprehensive monitoring efforts are thus needed to elucidate the type of vectors responsible for the arrival of invasive species in this region. Raising awareness and promoting education are vital components in fostering sustainable solutions to combat plastic pollution in the country and globally.


Assuntos
Briozoários , Ostreidae , Animais , Monitoramento Ambiental , Plásticos/química , Madeira/química , Têxteis , Espécies Introduzidas , Resíduos/análise , Praias
15.
Sci Rep ; 13(1): 15516, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726371

RESUMO

Adverse event (AE) management is important to improve anti-cancer treatment outcomes, but it is known that some AE signals can be missed during clinical visits. In particular, AEs that affect patients' activities of daily living (ADL) need careful monitoring as they may require immediate medical intervention. This study aimed to build deep-learning (DL) models for extracting signals of AEs limiting ADL from patients' narratives. The data source was blog posts written in Japanese by breast cancer patients. After pre-processing and annotation for AE signals, three DL models (BERT, ELECTRA, and T5) were trained and tested in three different approaches for AE signal identification. The performances of the trained models were evaluated in terms of precision, recall, and F1 scores. From 2,272 blog posts, 191 and 702 articles were identified as describing AEs limiting ADL or not limiting ADL, respectively. Among tested DL modes and approaches, T5 showed the best F1 scores to identify articles with AE limiting ADL or all AE: 0.557 and 0.811, respectively. The most frequent AE signals were "pain or numbness", "fatigue" and "nausea". Our results suggest that this AE monitoring scheme focusing on patients' ADL has potential to reinforce current AE management provided by medical staff.


Assuntos
Neoplasias da Mama , Briozoários , Humanos , Animais , Feminino , Atividades Cotidianas , Hipestesia , Corpo Clínico
16.
J Morphol ; 284(9): e21620, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37585229

RESUMO

Bryozoans are colonial, suspension-feeding lophotrochozoans. The phylum consists of the large group of chiefly marine Myolaemata and the exclusively limnic Phylactolaemata. Each colony consists of individual zooids that comprise the protective cystid and the retractable polypide. Phylactolaemates are a small group of approximately 90 species in 6 families. They feature a body wall, that can either be gelatinous, as in the families Stephanellidae, Lophopodidae, Cristatellidae and Pectinatellidae, or encrusted, as in Plumatellidae and Fredericellidae. Morphological investigations of the most specious plumatellids are rare and focus on few species. Plumatella fruticosa is of particular interest in this regard, as it shows a mosaic of plumatellid and fredericellids characters. The most recent phylogeny clusters P. fruticosa with cristatellids and pectinatellids as sister groups to fredericellids. Hence, there is considerable doubt, whether P. fruticosa is truly a plumatellid. Therefore, this study aims to reinvestigate the morphology of P. fruticosa with confocal microscopy and section-based three-dimensional reconstruction. The new data show that P. fruticosa has numerous conspicuous stumps from fragmented proliferation buds, which are otherwise only known from fredericellids. Like fredericellids, P. fruticosa grows erect, but in contrast, has a horseshoe-shaped lophophore and floatoblasts. Besides the proportions of the lophophore, the tentacle sheath and digestive tract resemble a fredericellid-like situation. Myoanatomical details like the pronounced longitudinal muscles of the vestibular wall and tentacle sheath differ from plumatellids and favour the recently proposed scenario, which places P. fruticosa next to Pectinatellidae and Cristatellidae. In addition, the intertentacular membrane of P. fruticosa shows structural similarity to cristatellids as it is attached to the tentacles via lamellae. Taking all aspects into account, we erect a new family: Hirosellidae fam. nov. including the new genus Hirosella gen. nov.


Assuntos
Briozoários , Animais , Briozoários/anatomia & histologia , Filogenia , Músculos/anatomia & histologia , Água Doce , Microscopia Confocal
17.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445696

RESUMO

Biofouling is the growth of organisms on wet surfaces. Biofouling includes micro- (bacteria and unicellular algae) and macrofouling (mussels, barnacles, tube worms, bryozoans, etc.) and is a major problem for industries. However, the settlement and growth of some biofouling species, like oysters and corals, can be desirable. Thus, it is important to understand the process of biofouling in detail. Modern "omic" techniques, such as metabolomics, metagenomics, transcriptomics, and proteomics, provide unique opportunities to study biofouling organisms and communities and investigate their metabolites and environmental interactions. In this review, we analyze the recent publications that employ metagenomic, metabolomic, and proteomic techniques for the investigation of biofouling and biofouling organisms. Specific emphasis is given to metagenomics, proteomics and publications using combinations of different "omics" techniques. Finally, this review presents the future outlook for the use of "omics" techniques in marine biofouling studies. Like all trans-disciplinary research, environmental "omics" is in its infancy and will advance rapidly as researchers develop the necessary expertise, theory, and technology.


Assuntos
Incrustação Biológica , Briozoários , Animais , Proteômica , Bactérias , Tecnologia , Organismos Aquáticos/genética
18.
PeerJ ; 11: e15456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334117

RESUMO

Non-indigenous species tend to colonize aquaculture installations, especially when they are near international ports. In addition to the local environmental hazard that colonizing non-indigenous species pose, they can also take advantage of local transport opportunities to spread elsewhere. In this study, we examined the risk of the spread of eight invasive fouling species that are found in mussel farms in southern Brazil. We used ensemble niche models based on worldwide occurrences of these species, and environmental variables (ocean temperature and salinity) to predict suitable areas for each species with three algorithms (Maxent, Random Forest, and Support Vector Machine). As a proxy for propagule pressure, we used the tonnage transported by container ships from Santa Catarina (the main mariculture region) that travel to other Brazilian ports. We found that ports in the tropical states of Pernambuco, Ceará, and Bahia received the largest tonnage, although far from Santa Catarina and in a different ecoregion. The ascidians Aplidium accarense and Didemnum perlucidum are known from Bahia, with a high risk of invasion in the other states. The bryozoan Watersipora subtorquata also has a high risk of establishment in Pernambuco, while the ascidian Botrylloides giganteus has a medium risk in Bahia. Paraná, a state in the same ecoregion as Santa Catarina is likely to be invaded by all species. A second state in this region, Rio Grande do Sul, is vulnerable to A. accarense, the barnacle Megabalanus coccopoma, and the mussel Mytilus galloprovincialis. Climate change is changing species latitudinal distributions and most species will gain rather than lose area in near future (by 2050). As an ideal habitat for fouling organisms and invasive species, aquaculture farms can increase propagule pressure and thus the probability that species will expand their distributions, especially if they are close to ports. Therefore, an integrated approach of the risks of both aquaculture and nautical transport equipment present in a region is necessary to better inform decision-making procedures aiming at the expansion or establishment of new aquaculture farms. The risk maps provided will allow authorities and regional stakeholders to prioritize areas of concern for mitigating the present and future spread of fouling species.


Assuntos
Briozoários , Urocordados , Animais , Espécies Introduzidas , Ecossistema , Aquicultura , Navios
19.
J Morphol ; 284(7): e21601, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37313765

RESUMO

Bryozoan colonies are composed of zooids, which can differ in structure and function. Autozooids supply heteromorphic zooids with nutrients, which are usually unable to feed. To date, the ultrastructure of the tissues providing nutrient transfer is almost unexplored. Here, we present a detailed description of the colonial system of integration (CSI) and the different types of pore plates in Dendrobeania fruticosa. All cells of the CSI are joined by tight junctions that isolate its lumen. The lumen of the CSI is not a single structure, but a dense network of small interstices filled with a heterogeneous matrix. In autozooids, the CSI is composed of two types of cells: elongated and stellate. Elongated cells form the central part of the CSI, including two main longitudinal cords and several main branches to the gut and pore plates. Stellate cells compose the peripheral part of the CSI, which is a delicate mesh starting from the central part and reaching various structures of autozooids. Autozooids have two tiny muscular funiculi, which start from the caecum apex and run to the basal wall. Each funiculus includes a central cord of extracellular matrix and two longitudinal muscle cells; together they are enveloped with a layer of cells. The rosette complexes of all types of pore plates in D. fruticosa display a similar cellular composition: a cincture cell and a few special cells; limiting cells are absent. Special cells have bidirectional polarity in interautozooidal and avicularian pore plates. This is probably due to the need for bidirectional transport of nutrients during degeneration-regeneration cycles. Cincture cells and epidermal cells of pore plates contain microtubules and inclusions resembling dense-cored vesicles, which are typical of neurons. Probably, cincture cells are involved in the signal transduction from one zooid to another and can be a part of the colony-wide nervous system.


Assuntos
Briozoários , Gastrópodes , Animais , Ceco , Células Epidérmicas , Matriz Extracelular
20.
Zoolog Sci ; 40(3): 175-188, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37256564

RESUMO

The cheilostome bryozoan Cauloramphus magnus is common in the rocky intertidal habitat from southeastern Alaska to northern Japan. We examined its phylogeography by analyzing 576 bp of the mitochondrial COI (cox1) gene sequenced for 298 colonies from 16 localities in northern Japan. A maximum-likelihood phylogeny detected three main clades (A, B, C). Clades A and B occurred throughout the study area but differed in frequency, haplotype diversity, and haplotype distribution; each resolved into three divergent subclades (AI-III, BI-III). Clade A shared none among 15 haplotypes between the Pacific and Sea of Japan sides of Hokkaido. In contrast, Clade B (29 haplotypes) was thrice as common as Clade A among samples, with haplotype B28 common on both sides. Divergent Clade C (nine haplotypes) was detected only at Rumoi. K2P divergences of 12.3-28.3% among Clades A-C suggest these are distinct biological species, a conclusion supported by different inferred evolutionary histories. A bPTP species delimitation analysis indicated nine phylogenetic species among the sequences included in our phylogeny (AI-III, BI-III, C, and one specimen each from Alaska and the Commander Islands), with K2P divergences of 3.9-6.5% among subclades in A or B. Statistical and principal components analyses suggested weak morphological differentiation between Clades A + B and C, although overlapping ranges of measurements preclude identification to clade; these three clades are morphologically cryptic. For taxonomy, we suggest retaining the name C. magnus for lineages within this species complex across its range, followed by a clade designation, if known.


Assuntos
Briozoários , Animais , Filogenia , Japão , Briozoários/genética , Filogeografia , Sequência de Bases , Haplótipos , DNA Mitocondrial/genética , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...